Images in...

Cranial Thoracic Stenotic Spondylomyelopathy in a Young Rottweiler

Silke Hecht, Jennifer Michaels, Sarah Childers, Linden Craig

Description

A four-month-old male entire Rottweiler presented for progressive pelvic limb ataxia. Neurological examination revealed non-ambulatory paraparesis with ataxia in pelvic limbs, absent pelvic limb postural reactions, clonic patellar reflexes, normal withdrawal reflexes in all limbs and hyperesthesia on neck manipulation. Weight shifting and splaying of the thoracic limbs (representing either mild paresis or compensatory gait change) were also noted. Neurolocalisation was third thoracic to third lumbar spinal cord segments (Th3-L3), most likely within the cranial aspect of this region. MRI showed enlargement of the dorsal laminae and articular processes of Th1-4, causing multifocal vertebral canal stenosis and attenuation of epidural fat and cerebrospinal fluid (CSF) signal on T2-weighted and myelographic sequences (Fig 1a,b). Changes were most severe at Th2-3 and associated with moderate dorsoventral spinal cord compression (Fig 1c). Lesser degree spinal cord compression was noted at Th1-2 and Th3-4 (Fig 1d,e). CT confirmed the MRI findings (Fig 1f). The imaging diagnoses were cranial thoracic stenosis due to vertebral malformation and articular process/dorsal lamina hypertrophy previously reported in large and giant breed dogs (Stalin and others 2009, Johnson and others 2012). Surgical decompression (dorsal laminectomy) was declined. Postmortem evaluation yielded a final diagnosis of developmental thoracic stenotic spondylomyelopathy with secondary severe segmental chronic myelomalacia (Fig 2). Cranial thoracic stenosis most commonly affects young, heavy, male dogs with a conformation typical of Molosser breeds. This disorder is less common than osseous-associated cervical spondylomyelopathy but is similar with regard to patient signalment and morphological features (da Costa 2010).

FIG 1: This four-month-old male Rottweiler presented with progressive ataxia. MRI and CT were performed. MR images of the cervicothoracic spine. Sagittal T2-weighted (a) and myelographic (b) images showing vertebral canal stenosis and attenuation of dorsal epidural fat and cerebrospinal fluid signal at Th2-3 and to a lesser degree Th1-2 and Th3-4 (arrows). Transverse T2-weighted image at Th2-3 (c) demonstrates enlargement of the articular processes as well as the dorsal lamina with marked narrowing of the vertebral canal (arrowheads), complete circumferential attenuation of epidural and subarachnoid space signal and moderate dorsoventral spinal cord compression. Lesser degree spinal cord compression due to articular process hypertrophy is also noted at Th1-2 and Th3-4 (d,e; arrowheads). (f) 3D rendering of CT images shows multifocal narrowing of the vertebral canal from dorsolaterally.

To cite: Hecht S, Michaels J, Childers S, et al. Vet Rec Case Rep 2017;0:e000382. doi:10.1136/vetreccr-2016-000382
FIG 2: This is the cranial end of the third thoracic vertebra. The left cranial facet is more ventrally angled than the right. There is marked synovial and fibrous proliferation dorsal to the spinal canal resulting in a narrowed canal.
Cranial thoracic stenotic spondylomyelopathy in a young Rottweiler

Silke Hecht, Jennifer Michaels, Sarah Childers and Linden Craig

Vet Rec Case Rep 2017 5:
doi: 10.1136/vetreccr-2016-000382

Updated information and services can be found at:
http://vetrecordcasereports.bmj.com/content/5/1/e000382

These include:

References
This article cites 3 articles, 0 of which you can access for free at:
http://vetrecordcasereports.bmj.com/content/5/1/e000382#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/